Context 0000 The occultation of December 12th 000000 Conclusion O

The Betelgeuse/Leona ocultation 12th December 2023

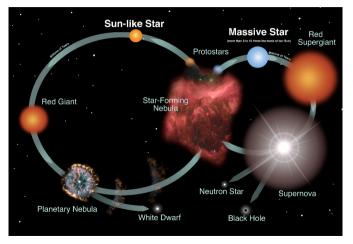
Miguel Montargès

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

★ Région îledeFrance

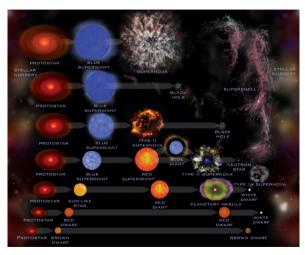
Detrick Lim APOD 21 Mar, 2018 ESOP 42 17th September 2023

This project received funding under the Framework Program for Research and Innovation "Horizon 2020" under the Marie Sklodowska- Curie Grant Agreement No. 945298.


Miguel Montargès

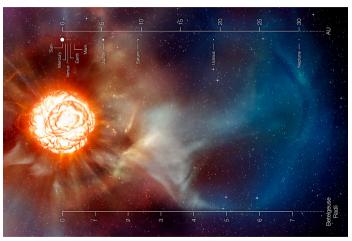
The Betelgeuse/Leona ocultation 12th December 2023

The occultation of December 12th 000000


Stellar evolution cycle

Asymptotic Giant Branch (AGB, M_{init} ≲ 8 M_☉)

Credits: NASA and the Night Sky Network

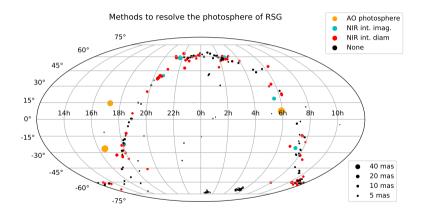

Stellar evolution cycle

Credits: NASA/Chandra

The occultation of December 12th 000000

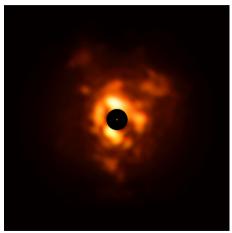
Mass loss of red supergiant stars

$1~M_{\odot}$ / 500 000 years Credits: ESO/L. Calçada / Video st35gm04b0n002_l3brm_1

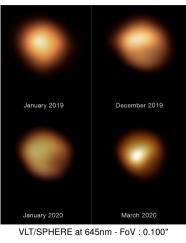

Miguel Montargès

The Betelgeuse/Leona ocultation 12th December 2023

Context ○○●O The occultation of December 12^{tl}


Conclusior O

RSGs as seen from Earth


Credits: M. Montargès

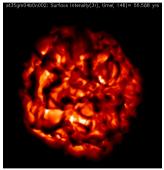
Betelgeuse with high angular resolution

VLT/VISIR at 10µm - FoV : 5.63"

Credits: ESO/P. Kervella/M. Montargès et al., Ackn.: E. Pantin

(Montargès et al. 2021, Nature)

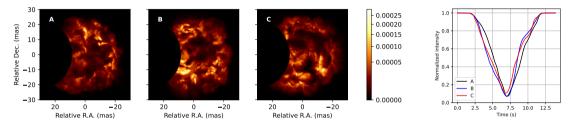
The occultation path



Last news on: https://lesia.obspm.fr/lucky-star/occ.php?p=124370

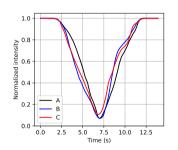
Not an occultation, but an annular eclipse

 $\label{eq:artist} \mbox{Artist impression of the asteroid Steins} \\ \mbox{Estimated angular diameter of Leona} \sim 45\text{-}50 \mbox{ mas} \\ \label{eq:artist}$

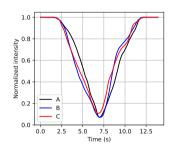


3D RHD simulation of the photosphere of Betelgeuse (Freytag/Chiavassa)

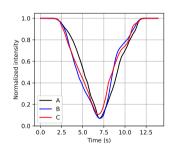
Angular diameter of Betelgeuse ~ 50-55 mas (visible)


The occultation of December 12th

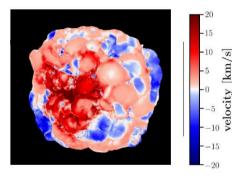
The light curve


Credits: M. Montargès

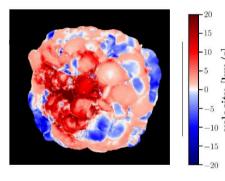
Photometry

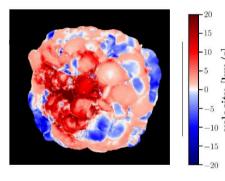

- Short integration time (~ 10-50 ms) to get the ingress and the egress
- Time-box (accurate time) !
 - Priority 0: filters R and V
 - Priority 1: R and B
 - Priority 2: R and H α
- Several cords to probe several regions of the star

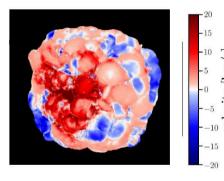
Photometry



- Short integration time (~ 10-50 ms) to get the ingress and the egress
- Time-box (accurate time) !
 - Priority 0: filters R and V
 - Priority 1: R and B
 - Priority 2: R and H α
- Several cords to probe several regions of the star
- → Because of the TiO (mainly in the green), we should observe the changing contrast of the convective pattern


Photometry


- Short integration time (~ 10-50 ms) to get the ingress and the egress
- Time-box (accurate time) !
 - Priority 0: filters R and V
 - Priority 1: R and B
 - Priority 2: R and H α
- Several cords to probe several regions of the star
- → Because of the TiO (mainly in the green), we should observe the changing contrast of the convective pattern
- $\rightarrow\,$ B filter \rightarrow beginning of the chromosphere ?
- \rightarrow H α \rightarrow larger atmosphere.


- Getting the evolution of the width and position of metallic lines during the event (Fi, N, Ti ...)
- R ~ 40 000 → Star'Ex HR (see with Christian Buil for details)

- Getting the evolution of the width and position of metallic lines during the event (Fi, N, Ti ...)
- R ~ 40 000 → Star'Ex HR (see with Christian Buil for details)
- → Best solution : having the slit parallel to the tracking direction, without tracking.

- Getting the evolution of the width and position of metallic lines during the event (Fi, N, Ti ...)
- R ~ 40 000 → Star'Ex HR (see with Christian Buil for details)
- → Best solution : having the slit parallel to the tracking direction, without tracking.

- Getting the evolution of the width and position of metallic lines during the event (Fi, N, Ti ...)
- R ~ 40 000 → Star'Ex HR (see with Christian Buil for details)
- → Best solution : having the slit parallel to the tracking direction, without tracking.
- ⇒ Will probe the phospheric convection velocity field

We need the shape of Leona to analyze the data!

Other regular occultations predicted:

- 29th October
- 30th et 31th December 2023 (sorry)

Precise times and location to be checked.

No need for filters or spectroscopy here, just regular occultation observations.

Conclusion

- On December 12th : an annular eclipse, not an occultation
- Ingress and egress most interesting
- Shape of Leona needed from other regular events
- Photometry:
 - Short integration time (\rightarrow earlier training on other stars between magnitude 0 and 10)
- Spectroscopy:
 - $\bullet \ R \sim 40\,000$
 - Single shot with no tracking (R.A. || slit)
 - Practicing mandatory

Registration/Coordination

http://betelgeuse.proam-gemini.fr/#EN