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TECHNICAL PUBLICATION

EXAMINATION OF THE ARMAGH OBSERVATORY ANNUAL MEAN  
TEMPERATURE RECORD, 1844–2004

1.  INTRODUCTION

 The Armagh Observatory temperature record is one of the longest available for study.1–3 Mean 
temperature readings based on maximum and minimum thermometers extend from 1844 to the present, 
where mean temperature is defined as the mean of the daily maximum and minimum temperatures. 

 Armagh Observatory3 lies about 1 km northeast of the center of the ancient city of Armagh in 
Northern Ireland, being located at latitude 54°21.2́N and longitude 6°38.9́W and situated about 64 m 
above mean sea level at the top of a small hill in an estate of natural woodland and parkland that measures 
about 7 ha. Studies have shown that its rural environment has ensured that the observatory suffers from 
little or no urban microclimatic effects4 and that the temperature readings can be used as a proxy for 
studying long-term trends in annual mean temperature for the northern hemisphere and globe.2,3

 The purpose of this study, then, is to examine the extended Armagh Observatory annual mean 
temperature record spanning 1844–2004, investigating trends in the data indicative of climatic change. In 
particular, this study updates a previous one that was based on the Armagh data spanning 1844–1992.2
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2.  RESULTS AND DISCUSSION

 Figure 1 displays the Armagh Observatory annual mean temperature T (1844–2004) in the lower 
panel, in comparison with the annual mean aa-geomagnetic index (1868–2004) in the middle panel and 
the annual mean sunspot number R (1840–2004) in the top panel, all drawn as thin lines. Ten-year moving 
averages of each are drawn as the thick lines, and the numbers appearing in the top panel refer to sunspot 
cycle numbers 9–23.

 Concerning T, it has a mean of 9.215 °C, a standard deviation of 0.521 °C and a median of 9.20 °C. 
For the interval 1844–2004, 82 values of T are equal to or above the median and 79 values of T are less 
than the median, occurring in 65 runs. Based on these values, one finds that T appears to be distributed 
nonrandomly at the 2-percent level of significance (or 98-percent confidence level (cl)).5 Furthermore, 
the average T for the first half of the record (1844–1923) is significantly lower than the average for the 
latter half of the record (1924–2004) at the 0.1-percent level of significance (or 99.9-percent cl), based 
on the t-statistic for independent samples.6 During the first half of the record, the average T measured 
9.028 °C, having a standard deviation of 0.518 °C, while during the latter half it measured 9.400 °C, 
having a standard deviation of 0.455 °C. Thus, there has been a significant warming that appears to vary 
systematically rather than randomly.

 The highest T occurred in 1846 and measured 10.40 °C, while the lowest T occurred in 1879 and 
measured 7.40 °C. The highest T10 (10-year moving average of T) occurred in 1999 (the last entry) and 
measured 9.95 °C, while the lowest T10 occurred in 1883 and measured 8.44 °C. Thus, from 1883 to 
1999, T10 has increased 1.51 °C, and for 7 of the last 10 years (ending in 2004), T has exceeded 10 °C, 
unprecedented in the preceding years of the temperature record.

 Concerning T10, one finds that it decreased rather smoothly from 1849 (its first entry), having a 
value of 9.45 °C, to 1883 when the lowest value was seen. This was followed by a rather steady increase 
to a local peak of 9.58 °C in 1945, a slight decrease between 1945 and 1982 (to 9.05 C) and then a sharp 
increase to its highest value recorded so far (through 1999, the end of the T10 record).

 For the contemporaneous interval 1868–2004, T correlates strongly with both aa (r = 0.34, 
se = 0.44 °C) and R (r = 0.24, se = 0.51 °C), while for the contemporaneous interval 1873–1999 T10 correlates 
strongly with aa10 (r = 0.71, se = 0.22 °C) and R10 (r = 0.67, se = 0.23 °C), where the subscript 10 refers to 
the 10-year moving average (aa10 correlates strongly with R10, having r = 0.933). The inferred regression 
for T versus aa is T = 8.639 + 0.029 aa; the inferred regression for T versus R is T =  9.044 + 0.003 R; the 
inferred regression for T10 versus aa10 is T10 = 8.190 + 0.051 aa10; and the inferred regression for T10 
versus R10 is T10 = 8.562  + 0.011 R10. A bivariate analysis using both aa10 and R10 results in T10 = 8.205  
+ 0.048 aa10 + 0.001 R10, having a correlation coefficient of 0.71 and a standard error of estimate of 
0.22 °C (the bivariate fit offers no significant improvement over the single-variate fits). 



3

1840 1860 1880 1900 1920 1940 1960 1980 2000

Calendar Year

A
nn

ua
l M

ea
n 

Te
m

pe
ra

tu
re

 (°
C

)
 a

t A
rm

ag
h 

O
bs

er
va

to
ry

 (T
)

A
nn

ua
l M

ea
n 

(a
a)

–G
eo

m
ag

ne
tic

 In
de

x 
(a

a)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A
nn

ua
l M

ea
n 

Su
ns

po
t N

um
be

r (
R

)

7

8

9

10

11

10

0

20

30

40

100

200

Lowest T = 7.40 °CHighest T = 10.40 °C

Lowest T10 = 8.44 °C
Highest T10 = 9.95 °C

0

Figure 1.  Annual mean variation of Armagh Observatory temperature, T (lower panel); 
 the aa-geomagnetic index, aa (middle panel); and sunspot number, R (upper panel). 
 The thin lines are the annual means and the thick lines are the 10-year moving 
 averages. The numbers 9–23 in the upper panel refer to sunspot cycles 9–23. 
 See text for additional remarks.
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 Figure 2 depicts the residual T10 – T10(aa10) in the lower panel and the residual T10 – T10(R10) 
in the upper panel, where T10(aa10) and T10(R10) are the inferred regressions between T10 and aa10 
and between T10 and R10, respectively. The residuals (having removed the solar/geomagnetic forc-
ing, which accounts for about half the variance) suggest episodic variation in the temperature record, 
with a cooler interval in the early portion between about 1873 and 1896; a fairly steady, though 
slowly varying signal (possibly related to the North Atlantic Oscillation3) between about 1896 and 
1970; another brief interval of cooling between about 1970 and 1990; and a rapid warming after 
about 1990. It should be noted that T10 for 1999 (the end of the record and the highest inferred value) 
is greater than 2.6 standard deviations higher than what T10 should be, based on the T10(aa10) fit and 
greater than 3 standard deviations higher than what T10 should be, based on the T10(R10) fit. Thus, the 
observed warming is beyond that which one would expect from simple solar/geomagnetic forcing.7
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Figure 2.  The residual T10 – T10(aa10) (lower panel) and T10 – T10(R10) (upper panel), 
 where T10 is the 10-year moving average of temperature and T10(aa10) 
 and T10(R10) are the regression fits (T10 versus aa10 and T10 versus R10). 
 See text for details.

 Figure 3 shows another way of illustrating the temperature record. The lower panel displays the 
sunspot cyclic average (from sunspot minimum to minimum) of temperature <T> versus sunspot cycle 
number, in comparison to cyclic averages of the aa-geomagnetic index <aa> (middle panel) and sunspot 
number <R> (upper panel). The thin line in each panel refers to the cyclic averages and the thick line refers 
to the 2-cycle moving average (the 2-cycle moving average,8 or 3-cycle running mean, is computed with 
a weighting of 1:2:1 and can be used as a proxy for the Hale cycle average, where the Hale cycle refers to 
two successive sunspot cycles9). There is a striking similarity in the various curves, especially the 2-cycle 
moving averages.
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 From figure 3, one surmises that <T>2 (the 2-cycle moving average of temperature) was lowest in 
cycle 12, which spans the years 1878–1888. This was followed by a steady rise in <T>2 between cycles 12 
and 18, then a slight dip in <T>2 for cycles 20 and 21 before rising again in cycle 22, which has the highest 
<T>2 in the record, although, plainly, its value will be exceeded in cycle 23, since cycle 23 has the highest 
<T> for all sunspot cycles. (<T> for cycle 23 will change slightly, since the temperature record ends in 
2004 and, therefore, does not include the annual average of T for the year 2005.)

 Figure 4 displays scatterplots of <T> versus <aa> (lower-left panel), <T> versus <R> (lower-
right panel), <T>2 versus <aa>2 (upper-left panel) and <T>2 versus <R>2 (upper-right panel). All inferred 
regressions are statistically significant, strongly suggesting that trends in the solar/geomagnetic cycle 
strongly influence temperature trends on the Earth. In particular, 75 percent of the variance in <T>2 can be 
explained by the variation of <aa>2. (In figure 4, the large filled circle in the <T> versus <aa> scatterplot 
simply means that two cycles had identical entries, cycles 11 and 16.)
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 See text and nomenclature for details.
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 Figure 5 shows the residuals of cyclic temperature, having removed the effects of the solar/
geomagnetic cycle. The lower panel shows the residual <T> – <T>aa, where <T>aa is the regression fit 
for <T> versus <aa>; the lower-middle panel shows the residual <T>2 – <T>aa2, where <T>aa2 is the 
regression fit for <T>2 versus <aa>2; the upper-middle panel shows the residual <T> – <T>R, where <T>R 
is the regression fit for <T> versus <R>; and the upper panel shows the residual <T>2 – <T>R2, where 
<T>R2 is the regression fit for <T>2 versus <R>2. The residual is most negative in cycles 12 and 21, 
suggesting, perhaps, a 9-cycle variation in temperature. Such a variation may be related to a supposed 
90–100 year variation, believed to be embedded in the solar/geomagnetic record.10–12 The residual for 
cycle 23 based on <aa> or <R> is 0.55 C and 0.65 C, respectively, both being greater than 2 standard 
deviations higher than that suggested by the regression fits. Hence, during cycle 23 temperatures on Earth 
are significantly warmer than can be explained simply by solar/geomagnetic forcing.

 Because of the highly significant correlations between <T>2 and both <aa>2 and <R>2, it is apparent 
that temperature is possibly related to the Hale cycle, either to the strength of the Hale cycle or, perhaps, 
its length (a Hale cycle consists of two successive sunspot cycles, where the magnetic polarities of leading 
and following sunspots in each of the Sun’s northern and southern hemisphere reverse from one sunspot 
cycle to the next, with positive magnetic fields leading in odd-numbered sunspot cycles in the northern 
hemisphere). Figure 6 depicts the scatterplots of <<T>> even-odd cycles versus <T> even-leading cycle 
for each Hale cycle pair, grouped as even-odd cycle pairs (left panel) and <<T>> odd-even cycles versus 
<T> odd-leading cycle for each Hale cycle pair, grouped as odd-even cycle pairs (right panel). The inferred 
correlation appears strongest for the even-odd cycle grouping, although both regressions are statistically 
important. The large filled circle in the right panel simply means that two entries were identical for odd-
even cycle pairs 9–10 and 19–20. Also, it should be noted that since an estimate of <T> can be made for 
cycle 23, having <T> = 9.97 °C, one can forecast <<T>> for the odd-even cycle pair of cycles 23–24; 
namely, <<T>>23–24 = 9.99 ±  0.29 °C, this being the 90-percent prediction interval.
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 Figure 7 displays the variation of average temperature <<T>> (lower panel) over each Hale cycle 
even-odd cycle pair, where Hale cycle 1 is defined as sunspot cycles 10 + 11, Hale cycle 2 as sunspot 
cycles 12 + 13, and so forth. Also shown are the Hale cycle averages of the aa-geomagnetic index <<aa>> 
(middle panel) and sunspot number <<R>> (upper panel). Again, very strong resemblance is apparent 
between the parameters. For example, there is a dip in <<T>> for Hale cycle 2 (sunspot cycles 12 + 13), 
a local peak for Hale cycle 5 (sunspot cycles 18 + 19), another local dip for Hale cycle 6 (sunspot cycles 
20 + 21) and a steep rise to Hale cycle 7 (sunspot cycles 22 + 23). For the current Hale cycle 7, <<T>> 
averages 9.72 °C, which is 1 °C higher than the minimum in Hale cycle 2 (8.72 °C) and which is the 
highest average of all the Hale cycles. (Recall, however, that the average temperature for Hale cycle 7 is 
really incomplete, because temperature data for the year 2005 has not yet been posted. Inclusion of the 
temperature for 2005, however, will not greatly affect the average temperature for Hale cycle 7.)
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 Figure 8 shows the scatterplots of <<T>> for each Hale cycle even-odd cycle pair versus <<aa>> 
(left panel), <<R>> (middle panel) and Hale cycle length in years (right panel). In all cases, the inferred 
regressions are statistically important. In particular, the inverse correlation between <<T>> and the length 
of the Hale cycle (associating higher temperature with shorter Hale cycle length) is quite strong (at the 
0.2-percent level of significance, or 99.8-percent cl). The inverse correlation has r = –0.937, a coefficient 
of determination r2 = 0.877 (this being a measure of the amount of variance explained by the inferred 
regression) and a standard error of estimate se =  0.115 °C. Previous studies have shown the importance 
of the length of the solar cycle—with respect to climate.2,13–15 (Figure 8 has been drawn presuming that 
Hale cycle 7—cycles 22–23—will be 20 years in length, meaning that cycle 24 has its onset in the year 
2006.16,17 If Hale cycle 7 is longer than 20 years, this will weaken the correlation.)
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3.  CONCLUSION

 Previously, Wilson2 examined the Armagh Observatory temperature record for the interval 1844–
1992. The purpose of the present study was to revisit that original study, updating the findings using the 
corrected and more extensive 1844–2004 temperature readings, which are now available online at <http://
climate.arm.ac.uk/calibrated.html>. 

 The Armagh Observatory temperature record is one of the longest available for study. A prominent 
feature of long-term temperature studies has been a general warming since the 1880s. Because both sunspot 
number and the aa-geomagnetic index have shown similar secular increases, a strong association between 
trends in global temperature on Earth and trends in the solar/geomagnetic cycle should be apparent.

 The aa-geomagnetic index was introduced in 1972 by Mayaud18 to quantify fluctuations in the 
geomagnetic field, being based on pairs of near-antipodal magnetometers located in England and Australia. 
The record of the aa-geomagnetic index extends from 1868 to the present. Geomagnetic activity, as 
characterized using the aa-geomagnetic index, is caused by the solar wind, in particular, coronal mass 
ejections and high-speed streams from coronal holes and the associated changes of the interplanetary 
magnetic field, thereby, affecting the near-Earth interplanetary space.19,20 Hence, the aa-geomagnetic 
index should be highly correlated with the sunspot cycle. In fact, as noted in the previous section, aa10 and 
R10 (the 10-year moving averages) are, indeed, highly correlated, having r = 0.933. While true, the actual 
minimum annual value of the aa-geomagnetic index usually lags sunspot minimum (by one year21) and 
the maximum annual value almost always occurs during the declining phase of the sunspot cycle (only 
two exceptions—cycles 12 and 13; see fig. 1). Additionally, evidence exists that the aa-geomagnetic index 
can be decomposed into two components: one mimicking the sunspot cycle and the other (the residual) 
being indicative of recurrent high-speed streams in the solar wind.22,23

 In this study, it has been shown that temperature at the Armagh Observatory averaged  
9.215 °C during the interval 1844–2004, having a standard deviation of 0.521 °C and a median of  
9.20 °C. Furthermore, annual mean temperatures at Armagh Observatory appear to vary systematically and 
nonrandomly, bearing a strong resemblance to the solar/geomagnetic cycle signatures as expressed using 
sunspot number and the aa-geomagnetic index (especially, the 10-year moving averages). The highest T 
occurred in 1846 (10.40 °C) and the lowest occurred in 1879 (7.40 °C), while the highest T10 occurred in 
1999 (the last entry, 9.95 °C) and the lowest in 1883 (8.44 °C). Thus, from 1883 to 1999, T10 rose 1.51 °C, 
or about 0.013 °C per year. For 7 of the last 10 years of the temperature record, annual mean temperatures 
at Armagh Observatory exceeded 10 °C, an unprecedented occurrence in the record.

 While there has been an overall rise (warming) in T10, similar to rises in sunspot and geomagnetic 
activity, the residual of temperature (having removed the effect of solar/geomagnetic forcing) appears 
episodic, with intervals indicative of both cooling and warming. The current warming (through 1999) is 
found to exceed that which one expects based on solar/geomagnetic forcing by more than 2.6 standard 
deviations.7
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 Another way of illustrating temperature variation is the use of temperature averages over each 
solar cycle. Averaged in this way, temperature variations strongly mimic those of the solar/geomagnetic 
cycle. In particular, variations in 2-cycle moving averages of the parameters (a proxy for the Hale cycle—
two successive sunspot cycles) are closely related, with <T>2 being lowest in cycle 12 and highest in cycle 
22 (although it will undoubtedly be exceeded in cycle 23). About 75 percent of the variance of <T>2 can 
be explained by the variation in <aa>2. Furthermore, there may be a 9-cycle variation embedded in the 
temperature record, as well (as in the sunspot record11).

 Averages of temperature (<<T>>) over even-odd Hale cycle pairs, likewise, strongly associates 
with similar averages for the solar/geomagnetic cycle. Hale cycle 2 (sunspot cycles 12 + 13) has the lowest 
average temperature (8.72 °C) and Hale cycle 7 (sunspot cycles 22 + 23) has the highest temperature 
(9.72 °C). While <<T>> correlates strongly against <<aa>> and <<R>>, an even stronger inverse 
correlation (r = –0.937) is found between <<T>> and the length of the Hale cycle, with higher average 
temperature being associated with shorter Hale cycle length. Indications are that the next Hale cycle will 
likely see even higher average temperature.

 In conclusion, this study has shown that solar/geomagnetic cycle forcing is embedded in the annual 
mean temperatures at Armagh Observatory, Northern Ireland. Removal of this effect, however, does not 
fully explain, especially, the rapid rise in temperatures now being experienced, this possibly being a strong 
indication that humankind is contributing to climatic change.24 
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