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The effect of decreased solar intensity on Irish oak
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[1] The climatic effects of historical volcanic eruptions are
well documented in the literature. What are less certain
however, are the effects of eruptions on more distant
environments, particularly vegetation. Here we present sub-
annual §'°C records from two high-resolution Irish oak
(Quercus spp.) chronologies that span the Laki (Grimsvétn)
1783 -84 and Tambora 1815 eruptions. In both instances, a
significant depletion in §'°C is recorded within the trees
following the eruption (~1.8%o). Historical meteorological
datasets from observatories near to the trees sampled
demonstrate that the shifts in carbon isotopic content
cannot be accounted for by changes in local climate. We
postulate atmospheric loading of ejecta from the eruptions
resulted in significantly reduced irradiance, increasing
discrimination within the trees. Citation: Ogle, N., C. S. M.
Turney, R. M. Kalin, L. O’Donnell, and C. J. Butler (2005),
Palaeovolcanic forcing of short-term dendroisotopic depletion:
The effect of decreased solar intensity on Irish oak, Geophys. Res.
Lett., 32, L04708, doi:10.1029/2004GL021623.

1. Introduction

[2] Considerable research has been carried out investi-
gating the climatic and social repercussions of historical
volcanic eruptions [e.g., Zielinski et al., 1995; Stothers,
1996; Pyle, 1997; Brayshay and Grattan, 1999; Sadler and
Grattan, 1999], partially because the ejecta can have a
significant effect both proximally and more distant from
the source. Numerous mechanisms have been proposed for
how eruptions can drive global climate on the short,
medium and long-term, though the production of fine ash
and sulphate aerosols are considered to be the most critical
products within a more distant context. Sulphate aerosols
are typically 500 nm in diameter, and if sufficiently pow-
erful, an eruption may eject large quantities of these
particles into the stratosphere (10—30 km). This loading,
in combination with a residence time of several years
[Rampino and Self, 1982; Devine et al., 1984], can transport
aerosols around the planet in the Junge layer [Legrand and
Delmas, 1987] reflecting incoming solar radiation and
ameliorating global climate. Two important eruptions that
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had considerable social and climatic effects both globally
and locally were Tambora (1815) and Laki (1783—84). The
former gave rise to colder conditions in Northern Europe
over a year after the eruption and the latter resulted in
an abnormally hot summer and cold winter immediately
following the eruption.

[3] The Tambora eruption (Sumbawa, Indonesia) is attrib-
uted to have killed around 90,000 people, largely through
famine and disease following the eruption. The force of the
eruption was so great (measuring 7 on the Volcanic Explo-
sivity Index (VEI)), that its reverberation was heard up to
2600 km away and the tephra plume extended 1300 km from
source [Stothers, 1984]. In addition, Rampino and Self
[1982] estimated that the total ejecta to be in the range of
150200 km®. Climatic repercussions were such that mean
temperatures decreased in the Northern Hemisphere mid-
latitudes by 0.8°C from 1815-1816, though the pattern was
highly variable. For instance, temperatures in central Eng-
land in 1816 were 1.5-2.7°C cooler than those of 1815
[Rampino and Self, 1982]. 1816 subsequently became
known as the ‘year without a summer’ and led to the last
great subsistence crisis in Europe [Harrington, 1992].
Stothers [1984] records that in London, 5 months after the
eruption there were spectacularly coloured twilights and
sunsets. Atmospheric haze was so acute that sunspots
became visible to the naked eye and even 2.5 years subse-
quently some haze still remained.

[4] The Icelandic Laki eruption of 1783 -84 was not the
most explosive eruption (VEI = 4) especially when com-
pared with Tambora, however the cumulative effect of
8 months of continuous atmospheric loading of sulphuric
aerosols resulted in one of the most important climatically
and socially repercussive events of the last millennium
[Brayshay and Grattan, 1999; Demarée and Ogilvie,
2001]. In demographic terms volcanic aerosol-related death
was widespread in Europe and North America [Jacoby et
al., 1999; Grattan et al., 2003, 2004]. In England, between
August 1783 and February 1784 an estimated 20,000 people
died as a consequence of volcanic aerosol levels in the
atmosphere [Witham and Oppenheimer, 2004].

[5s] Intotal, 122 Mt of SO, was released from the eruption
[Thordarson and Self, 2003], 95 Mt of which reached the
upper troposphere/lower stratosphere where in contact with
atmospheric moisture created approximately 200 Mt of
H,SO,4. Twenty-five megatons of H,SO, remained aloft
for over a year, the remaining 175 Mt contributing to the
hot, blue, dry fog that hung over the European continent
for over a year causing much anomalous atmospheric/
meteorological phenomena [Demarée and Ogilvie, 2001].
In combination with high surface summer temperatures,
violent thunderstorms, lightning and hail the fog caused
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profound damage to vegetation through leaf loss, scorching
and drying [Grattan and Charman, 1994; Brayshay and
Grattan, 1999; Grattan and Pyatt, 1999; Thordarson and
Self, 2001; van Swinden, 2001].

[6] A popular method for identifying past eruptions in sites
distant from volcanic sources is the use of tree-ring widths
(or a variation) to identify periods of stress under which the
plant was growing [LaMarche and Hirschboeck, 1984;
Baillie and Munro, 1988; Yamaguchi and Lawrence, 1993;
Jones et al., 1995; Kalela-Brundin, 1996; Briffa et al., 1998].
The results have often been contradictory, however [Zielinski
etal., 1995; Sadler and Grattan, 1999]. Although the method
provides high-precision ages on inferred eruptions, not all
events are detected using this approach, partially because the
extreme effects rarely span more than a growing season, and
sampling is often restricted to yearly increments. This study
presents a complimentarBy approach using high-resolution
stable carbon isotope (6'°C) analysis of Irish oak tree-rings
before and after the Tambora and Laki eruptions.

[7] Interpretation of 8'*C in climate terms is not straight-
forward. The stable carbon isotope composition of organic
material from terrestrial C3 plants reflects the plant metab-
olism during the lifetime of a given tissue and is directly
related to photosynthetic gas exchange [Farquhar et al.,
1989]. The discrimination against 13C, relative to 12C, is
related to the ci/c, ratio of a leaf:

§1C, = 8"Cy —a— (b —a) * ci/c, (1)
613Cp the stable carbon isotope composition of organic
material, %o
§'°C, the isotopic composition of atmospheric CO,, %o

a the isotope fractionation of CO, through air during
diffusion into the stomata (/=4.4%o)

b the fractionation caused by carboxylation
(~—27%0)

¢; internal CO, concentrations of the leaf stomatal

pore, ppm
c, external CO, concentrations, ppm

6" C, is therefore intrinsically linked to ci/c,. Any environ-
mental stress that influences the leaf stomatal conductance
and/or net assimilation will affect the &' Cp, through the
impacts on cy/c,.

[8] Numerous environmental controls on 613Cp have
been proposed, most importantly temperature via leaf-to-
air vapour pressure deficit [Beerling, 1996; Turney et al.,
1999], soil moisture/precipitation [Dupouey et al., 1993;
Anderson et al., 1996] and irradiance [Schleser, 1995;
Hanba et al., 1996].

2. Methods

[o9] The oak tree ring series selected for this report came
from Shane’s Castle located on the north coast of Lough
Neagh in Northern Ireland. Temperature data related to
Tambora came from observations made at Armagh Obser-
vatory 50 km to the south of the sample site and for the Laki
eruption from central England, approximately 200 km to the
south-east of the sample site [Parker et al., 1991]. In the
laboratory, tree samples were dendrochronologically dated,
submerged in water for several days and then each ring
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pared using a microtome. With a resolution of down to
20 pm, more than 30 samples could be shaved from a single
ring. Dry wood shavings were then individually bleached to
holocellulose in filter paper pouches using a deionised
water, sodium chlorite, and hydrochloric acid solution.
The process took several days. Five milligrams of dry
holocellulose sample was then placed in Vycor™ tubing
with an excess of copper oxide to act as an oxygen source.
The tubes were evacuated, sealed and then heated in a
furnace to 950°C. Once cooled the CO, generated in the
tubes was collected by passing the gas through a dry ice/
ethanol trap and collecting in a suitable vessel under liquid
nitrogen. The vessels used to collect the gas were then taken
to the mass spectrometer (Micromass 602E) for §'°C
analysis. Repeat analysis on the same wholewood sample
yielded an analytical precision of better than 0.2%o (at
lo confidence limits).

3. Results and Discussion

[10] The dataset spanning the Tambora eruption (1814—
1819) is given in Figure la. The §'°C values vary over a
3%o range (—21.5%o0 to —24.5%0) [Ogle, 1995]. A rapid
depletion in §'°C values is recorded throughout the entire
1816 growing season (March—September) with a total
depletion of approximately 1.6%o.

[11] 1817, the narrowest ring of the series indicates
reduced growing conditions at this time, two years after
the eruption of Tambora. In contrast, the isotopic values are
partially recovering with a gradual enrichment in 13C prior
to further depletion in 1818 before a sharp enrichment in
1819.

[12] Figure 1b displays a similar scenario for the Laki
eruption of 1783—84. In this data set ranging from 1781—
1786 the total spread in §'*C values is approximately 3.5%o.
Throughout 1783 and into 1784 §'°C values deplete by as
much as approximately 2%o before values become more
enriched during the summer months of 1784 and reach their
pre-eruption values at the start of 1785. With abnormally
high surface air temperatures in 1783 one would expect
§'°C to enrich therefore we discard temperature as a forcing
mechanism for the observed depletion.

[13] So it appears that both the isotopic records of Laki
and Tambora record shifts to lighter values for approxi-
mately 6 and 10 months respectively. What is most intrigu-
ing with the isotope data in both of these cases is the
apparent time lag of depletion following both eruptions. In
the case of Tambora, the wood appears to be recording a
shift in photosynthetic conditions sometime around
8 months following the eruption coincident with models
that calculate the time it takes for acrosols from low latitude
eruptions to reach higher latitudes. The depletive effect of
the Laki eruption is almost instantaneous suggesting a
relationship with tropospheric aerosol transport from this
relatively close volcano. Continued depletion in later years
could be related to stratospheric aerosol load.

[14] Studies on northwest European terrestrial species-
and organ-specific plant macrofossils suggest a shift of
~1.5%0 associated with the transition from the Late glacial
Interstadial (a period of comparable warmth to the present)
to the Younger Dryas Stadial [Turney et al., 1997], a shift in
magnitude similar to that seen in the Shane’s Castle tree-
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Figure 1. §'3C values (blue lines) and weekly growing
season (March—September) temperature record (red lines)
spanning (a) 1814—1819 and (b) 1781—-1786. The approx-
imate timing of the Tambora and Laki eruptions in the record
is noted. See color version of this figure in the HTML.

rings. The associated temperature decline into the Younger
Dryas was of the order of 6°C during the warmest months
[Lowe et al., 1999], several degrees greater in variation than
that observed in our records. It seems again unlikely
therefore, that changes in temperature can account for the
significant shifts in 6'°C values following either eruption.
[15] In the absence of other stress-inducing conditions we
suggest possible causes for §'°C depletion. As a result of the
Tambora eruption the Icelandic low pressure area was
forced southwards bringing cooler conditions to Western
Europe with increased summer rainfall. Perhaps this may
explain the Tambora depletion but not Laki with its asso-
ciated high summer temperatures in 1783. A second possi-
ble cause for the depletions could be the volume of sulphur
compounds in the atmosphere having an adverse effect on
photosynthesis. Related to this however we believe is the
most likely cause: a decrease in irradiance caused by
increased light scattering and light absorbing as a result of
aerosols in the atmosphere generated by both eruptions. The
Dust Veil Index of Lamb [1970], the Volcanic Explosivity
Index of Newhall and Self [1982] and the recent estimates
of Hartmann and Mouginis-Mark [1999] and Thordarson
and Self [2003] point to the high aerosol content generated
by both eruptions. While surface temperatures may have
been marginally cooler regionally (the 1783 summer tem-
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peratures notwithstanding), plants are extremely sensitive to
decreases in sunlight below optimal conditions. Contempo-
rary studies indicate that changes in the §'°C of terrestrial
plant tissue can result from changes in light levels.
Decreasing irradiance leads to low photosynthetic activity,
increasing the intercellular CO, concentration and resulting
in a relative depletion in '>C [Ehleringer et al., 1986;
Farquhar et al., 1989; Schleser, 1995]. Tt seems likely,
therefore, that the significant shifts in isotopic values we
record here are as a result of changes in irradiance and not
meteorological conditions per se.

[16] European oak ring width chronologies narrow in the
years following Tambora, suggesting the trees were respond-
ing to a downturn in climatic conditions and a reduction in
growth, but ring widths immediately following the Laki
eruption do not show an appreciable narrowing. Narrow
rings can be found in 1785—-1786—1787 but whether or not
this is volcanic-related is questionable [Zielinski et al.,
1995]. Pine chronologies however from Eurasia and North
America do show a distinct paling and a reduction in density
in the years following Laki [Zielinski et al., 1995; Kalela-
Brundin, 1996]. Therefore it would appear that this isotopic
method of detecting past volcanic eruptions may compli-
ment and support the traditional techniques of ring widths or
ring densities.

4. Conclusions

[17] While it is accepted that temperatures on a regional
scale take a downturn in response to massive volcanic
eruptions this study has shown that despite growing season
temperatures remaining constant in the North of Ireland at
the time of the Laki and Tambora eruptions, §'*C in an Irish
oak exhibited rapid depletion. We believe the most likely
cause for these depletions is a response to ejecta loading the
stratosphere or when the prevailing environmental condi-
tions allow, the troposphere, and occlude the sun thereby
hindering optimal photosynthetic operation and allowing
the maintenance of high intercellular CO, concentrations.
We consider 6'°C to be a sensitive, precise indicator of past
volcanic eruptions that compliments more traditional tech-
niques, such as ring widths or ring densities and should be
used alongside other methods. We acknowledge the limi-
tations of the sampling strategy of this study but the results
warrant further investigation.

[18] Acknowledgment. We thank D. M. Brown for provision of
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Armagh Observatory and Meteorological Office, Bracknell, UK for the
provision of weather data.
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