

Exploring the Cosmos since 1790 A Level Physics Astronomy

2020 Professor Michael Burton

Programme 2020 <u>www.armagh.space</u> → Education → Secondary Schools → A-Level

Week	Class	Tutorial	Planetarium
1. Tuesday March 10	Doppler Redshift & Stars	Doppler Redshift for orbit of a planet	Our Solar System
2. Wednesday March 25	Cosmological Redshift & Galaxies	Hubble's Law	Our Galaxy
3. Thursday April 2	Cosmology & the Age of the Universe	Cosmic Scales	Galaxies and Large- Scale Structure

Lecture 1

Doppler Redshift and Stars

Distances in Astronomy

- Astronomical Unit
 - Average distance from Earth to Sun
 - 1 AU = 1.5 x 10¹¹ m
- Light Year
 - Distance light travels in 1 year
 - 1 lyr = 9.5 x 10¹⁵ m
- Parsec
 - Distance to star with a parallax angle of 1 arcsecond on a 1 AU baseline
 - 1 pc = 3.0 x 10¹⁶ m

Stars

- The basic components of the Universe!
- Balls of gas undergoing nuclear fusion in their cores

Star Clusters

• Stars are often found in clusters

Spectra

- "Continuum" spectrum of stars produces the "colours"
- Absorption by elements in star surface dark lines
- Emission by hot gas produces bright lines

Spectra of Stars

• Dark lines in the continuum spectrum of stars

Doppler Effect

- The change in frequency of a wave when there is relative motion between the source and observer
- Also applies to wavelength
 - Since speed = wavelength x frequency

 $c = \lambda f$

- When there is a medium (e.g. air, water), the Doppler effect depends on whether the source is moving, the observer is moving, or both.
 - This is a little tricky. Fortunately you will probably only need to apply the Doppler effect for light rather than sound, which turns out to be a little easier to understand.

Moving Source, Stationary Observer in a medium

- Approaching:
 - Waves are squashed
 - Frequency increases

•
$$f' = \frac{c}{c - u_{source}} f$$

- Receding:
 - Waves are stretched
 - Frequency decreases

•
$$f' = \frac{c}{c + u_{source}} f$$

c is the wave speed. e.g. speed of sound or light.

Stationary Source, Moving Observer in a medium [Not on the syllabus]

Stationary

source

U_{observer}.

U_{observer}

Moving observer

- Approaching
 - Wavefronts encountered more frequently
 - Shorter **λ**, Higher **f**

•
$$f' = \frac{c + u_{observer}}{c} f$$

- Receding
 - Wavefronts encountered less frequently
 - Longer λ , Lower **f**

$$f' = \frac{c - u_{observer}}{c} f$$

Light waves 'stretched' - Red Shift

Light waves 'squashed' - Blue Shift

- No medium light travels in a vacuum
- Only the relative speed between source & observer matters
- Approaching: $f' = \frac{c}{c-v}f$ and $\lambda' = (1 \frac{v}{c})\lambda$

• Receding:
$$f' = \frac{c}{c+v}f$$
 and $\lambda' = (1 + \frac{v}{c})\lambda$

This is the most important case you need to learn for A-level Physics! N.B. These are the same formula as for sound when the source is moving.

The Redshift Parameter, z

- Change in wavelength: $\Delta \lambda = \lambda' \lambda = \frac{\nu}{c} \lambda$
- Thus $\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$
- Define the Redshift Parameter, z, as the fractional change wavelength

• i.e.
$$z = \frac{\Delta \lambda}{\lambda} = \frac{v}{c}$$

- $z = \frac{v}{c} > 0$ when source is receding: Doppler "redshifted"
- $z = \frac{v}{c} < 0$ when source approaching: Doppler "blueshifted"